Acquisition of PeroxyChem

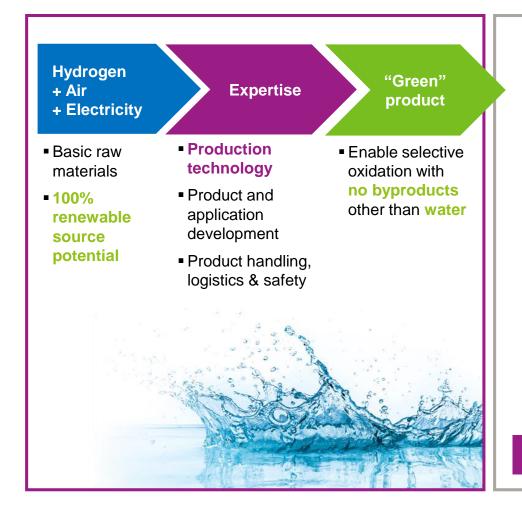
FUTURIZE PEROXIDE

8 November 2018

These materials may contain forward-looking statements based on current assumptions, forecasts and expectations made by Evonik Industries AG's management and other information currently available to Evonik Industries AG.

In so far as forecasts or expectations are expressed in this presentation or where our statements concern the future, these forecasts, expectations or statements may involve known or unknown risks and uncertainties. Actual results or developments may vary, depending on changes in the operating environment.

Neither Evonik Industries AG nor its group companies assume an obligation to update the forecasts, expectations or statements contained in this release. No reliance may be placed for any purposes whatsoever on the information contained in this presentation or on its completeness. No representation or warranty, expressed or implied, is given by or on behalf of Evonik Industries AG or any of its affiliates, directors, officers or employees, advisors or any other person as to the accuracy or completeness of the information or opinions contained in this document, and no liability whatsoever is accepted for any such information or opinions or any use which may be made of them.


Acquisition highlights

- Strengthening of Evonik's growth segment Resource Efficiency
- Focus on environmentally-friendly specialty applications
- Attractive end-market growth with low cyclicality
- Excellent fit with Evonik's peroxide portfolio expansion of business in North America
- EBITDA margin of ~20% above Evonik's average group margin
 - Strong FCF generation with sustainable FCF conversion >60%
 - Fair valuation with EV / adj. EBITDA multiple 7.8x (incl. synergies)

Strengthening growth segment Resource Efficiency

One of the most versatile and sustainable chemicals available

Hydrogen peroxide (H₂O₂) and Peracetic acid (PAA)

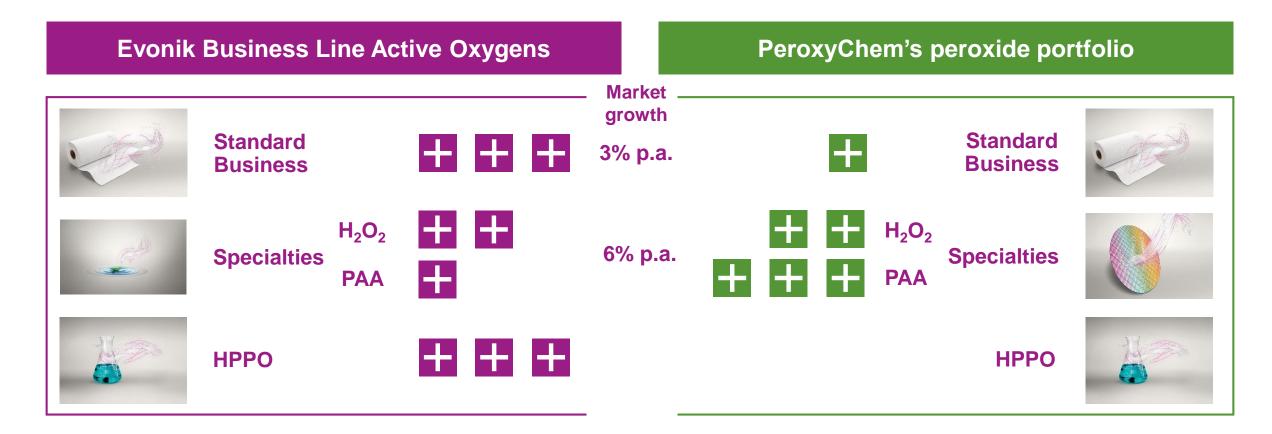
- Diverse applications and high importance of application development: to commercialize new and enhanced products, technologies and services
- Sustainability: stricter environmental regulations as growth driver for environmentally-friendly peroxide applications
- Highly contract-based business: longstanding customer relationships with high share of revenue under contracts of >1 year
- Resilience: attractive margin profile with minimal raw material volatility or seasonality in demand
- Asset set-up and logistics: customer proximity, supply security and logistics as decisive factors

Resilient and attractive business profile

PeroxyChem – Overview A global manufacturer and supplier of peroxides

PeroxyChem

- PeroxyChem is a global manufacturer and supplier of hydrogen peroxide (H₂O₂), peracetic acid (PAA) and persulfates (PS)
- Headquarter in Philadelphia, Pennsylvania
- Ownership: Private equity (One Equity Partners)
- Founded: 1900s (Foret and Buffalo Electro-chemical Co.)
- Headcount: ~600 globally, thereof ~20% in application development, sales and marketing
- Locations: 8 manufacturing facilities (USA, Canada, Germany, Spain, Thailand), 2 distribution facilities, 5 regional offices, 3 R&D labs



adj. EBITDA margin: ~20%

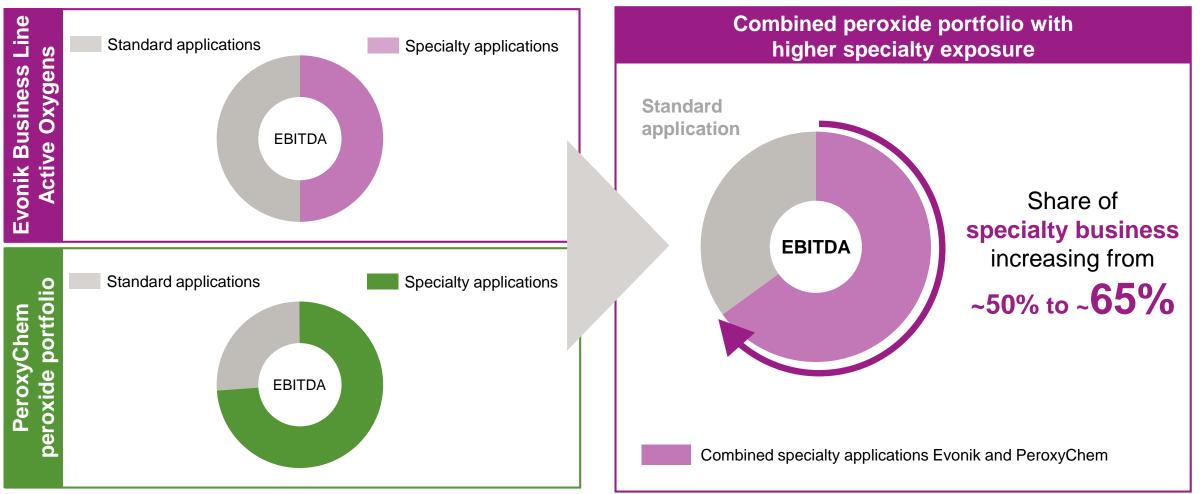
Acquisition of PeroxyChem

Excellent complementary fit with Evonik's existing peroxide business

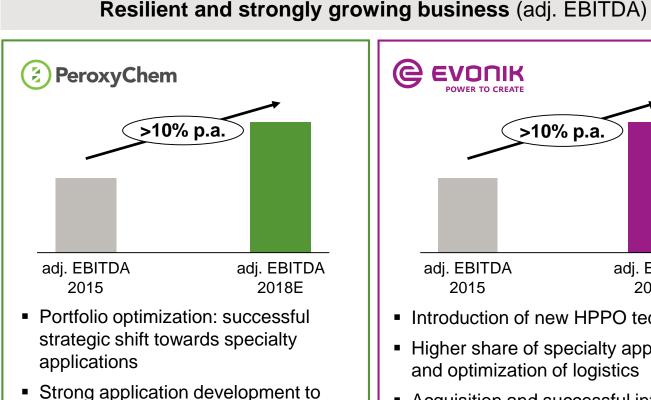
Combined sales¹: > €700 m

1. Sales of Evonik Business Line Active Oxygen and PeroxyChem

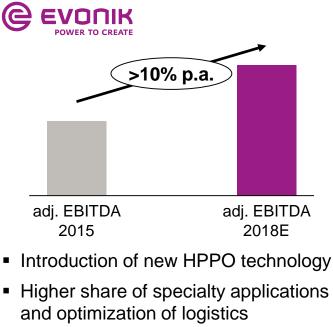
Attractive peroxide applications


Focus on specialty applications with strong secular growth drivers

Specialties	(CA)				
Industry	Environmental	Electronics	Food & Beverage	Other specialties	Process Chemicals
Application fields	 Solutions for waste water treatment, soil remediation and groundwater treatment H₂O₂ and PAA as alternative to chlorine 	 Ultra-pure hydrogen peroxide as cleaning agent in semiconductor Fabs 	 PAA as disinfectant in poultry & beef processing Aseptic packaging with H₂O₂ and PAA 	 Medical, consumer and personal care applications such as sterilization of medical equipment and contact lens solutions Energy: Persulfates and PAA in hydraulic fracturing 	 Hydrogen peroxide for pulp and paper processing H₂O₂ and PAA in chemical synthesis
Growth driver	 Stricter environmental regulations Redevelopments of former industrial or military sites 	 Growth of mobile devices Automatization and digitalization 	 Stronger regulations for food safety Increased demand for convenient packaged food 	 Increased regulations on cosmetic and care products for high purity grades Rising domestic oil and natural gas production 	 Customer need for increased high product quality and supply security
Growth	5-6% p.a.	>7% p.a.	4-6% p.a.	3-5% p.a.	3% p.a.


Evonik and PeroxyChem specialty exposure

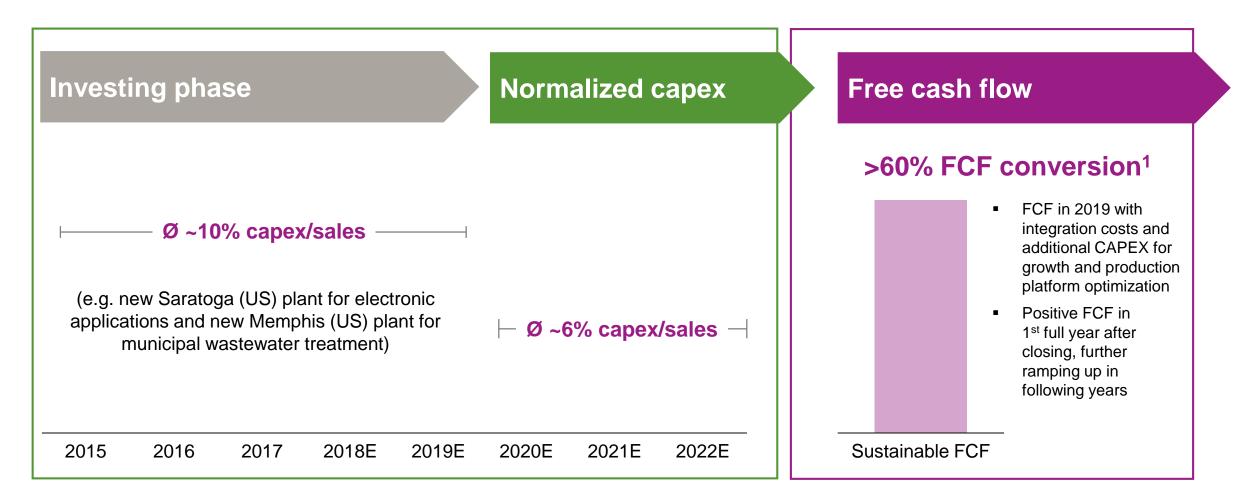
Expansion of high-growth and -margin specialty applications



Impressive growth track record and attractive growth perspective Earnings growth driven by portfolio shift to specialty business

commercialize new products

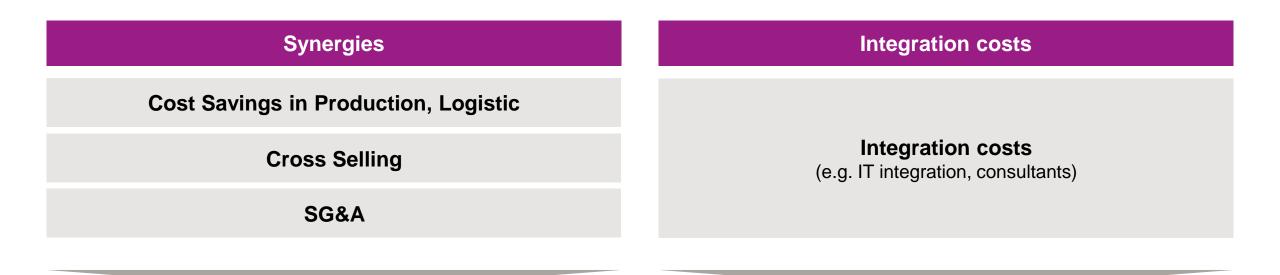
 Acquisition and successful integration of assets, e.g. Delfzijl (NL) site in 2015


Future growth drivers

- Sustainability drives growing demand for environmentally-friendly specialty applications
 - e.g. **new Memphis plant** with long-term take-or-pay contract with City of Memphis for municipal wastewater treatment
- Increased exposure towards specialty applications
- Optimization in combined asset set-up and logistics
- Realization of synergies

PeroxyChem – capital expenditures and free cash flow

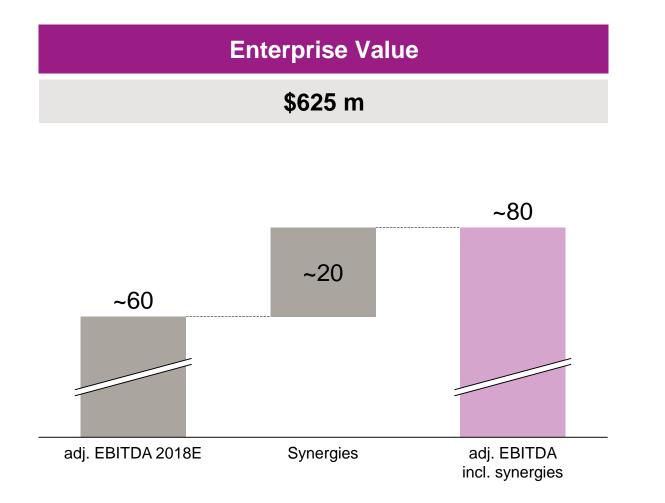
Low capital intensity and attractive FCF conversion



1. FCF conversion: FCF / adj. EBITDA

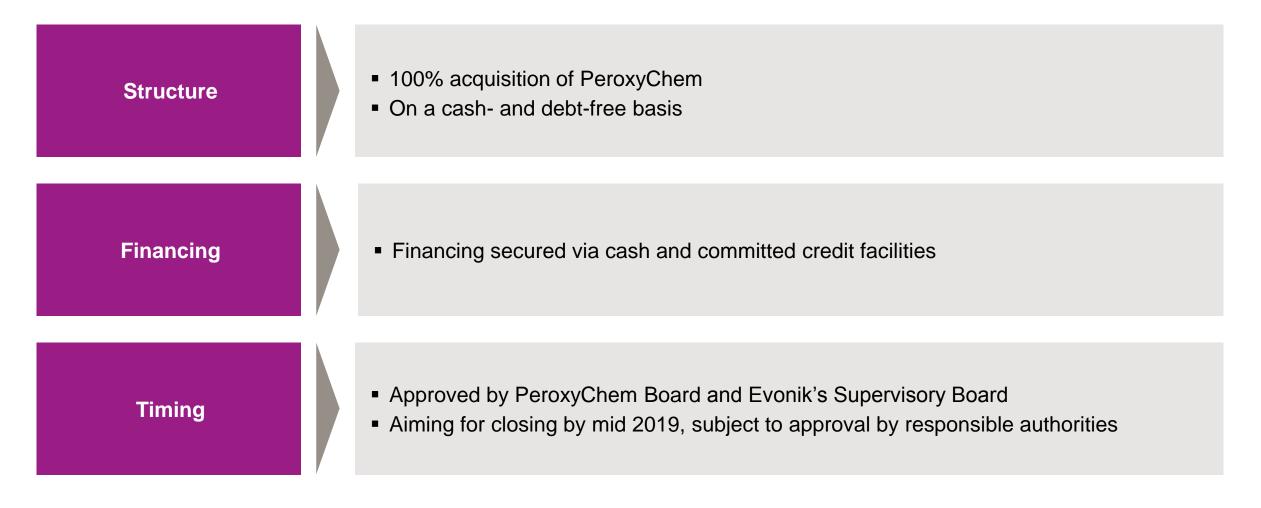
Synergies and integration costs

Tangible synergies driven by excellent strategic fit; low integration complexity


Total synergies: ~\$20 m p.a. fully realized by 2022

Expected cash-out of ~\$20 m in first 2 years

Integration costs excluding transaction costs


Attractive valuation

EV / adj. EBITDA 2018E **7.8**x including synergies EV / adj. EBITDA 2018E 10.4xexcluding synergies **EPS** accretive in 1st full year after closing

Transaction summary

Acquisition highlights

- Strengthening of Evonik's growth segment Resource Efficiency
- Focus on environmentally-friendly specialty applications
- Attractive end-market growth with low cyclicality
- Excellent fit with Evonik's peroxide portfolio expansion of business in North America
- EBITDA margin of ~20% above Evonik's average group margin
 - Strong FCF generation with sustainable FCF conversion >60%
 - Fair valuation with EV / adj. EBITDA multiple 7.8x (incl. synergies)

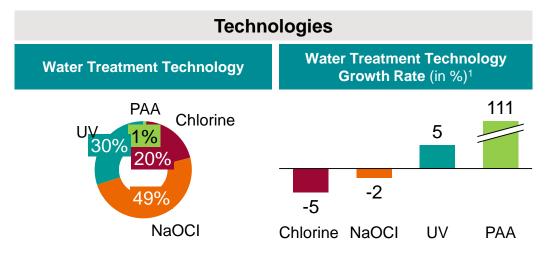
Evonik portfolio strategy Healthy mix of growth & financing businesses

Strengthen leading positions in attractive markets

- Strong growth profile
- Above-average returns
- Focus of capital allocation (capex, R&D, acquisitions)
- Examples: High Performance Polymers, Comfort & Insulation

 Environmentally-friendly oxidizer and disinfectant, replacing chlorine derivatives Hydrogen and oxygen as primary raw materials H₂O₂ is purified and diluted to various concentrations depending on the end use application Purity grades range from standard grade for Pack is an equilibrium mixture of hydrogen peroxide, acetic acid and water that is available in various grades Broad-spectrum sanitizer, disinfectant and sterilant, primarily used as an antimicrobial Easily dilutes in water and decomposes into non-toxic 	PeroxyChem Business Overview									
 replacing chlorine derivatives Hydrogen and oxygen as primary raw materials H₂O₂ is purified and diluted to various concentrations depending on the end use application Purity grades range from standard grade for numerous industrial applications to ultra-high purity grades for electronics and propulsion Decomposes to yield only oxygen and water 	Hydrogen Peroxide (H ₂ O ₂)	Persulfates (PS)								
safety in production, transportation and usage	replacing chlorine derivatives Hydrogen and oxygen as primary raw materials H ₂ O ₂ is purified and diluted to various concentrations depending on the end use application Purity grades range from standard grade for numerous industrial applications to ultra-high purity grades for electronics and propulsion Decomposes to yield only oxygen and water	 Ammonium, sodium and potassium persulfates used in a wide number of applications Key application for persulfates are in polymer initiation, soil and groundwater remediation and as a viscosity breaker in oil and gas fracking 								
ApplicationsApplicationsApplicationsElectronics, Food Safety, Environmental, Medical, Energy, Process ChemicalsFood Safety, Environmental, Medical, Energy, Process ChemicalsElectronics, Environmental, Pers Process Chemicals	Electronics, Food Safety, Environmental, Medical, Fo	Electronics, Environmental, Personal Care, Energy,								

Specialty Application Example (1): Wastewater disinfection


PAA is expected to enjoy robust growth in the near future

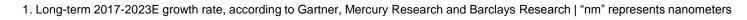
Industry Overview and Growth driver

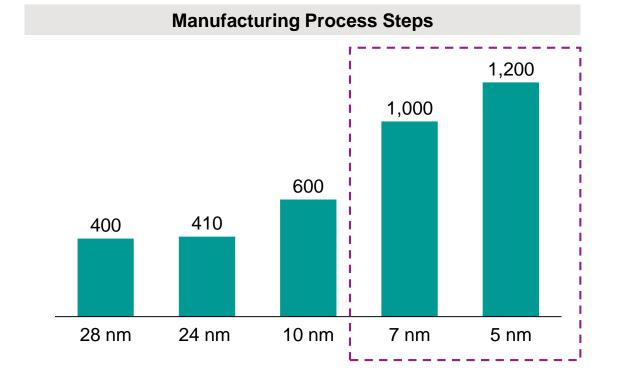
- Chlorine, sodium hypochlorite (NaOCI) or UV are today's most commonly used technologies to disinfect wastewater
- PAA as "green" alternative gaining more and more relevance, with the following advantages:
 - vs Chlorine: low-capital alternative, eliminating safety risks
 - vs NaOCI: lower operating costs and elimination of by-products
 - vs UV: performance improvement, lower maintenance and capex spending
- PAA introduced in U.S. municipal wastewater market by PeroxyChem in 2013, as of today already approved by 14 U.S. states

Long-term take-or-pay contract with City of Memphis for municipal wastewater treatment, start of product delivery late 2018

1. Based on PeroxyChem estimates and number of wastewater treatment plants served (2013-2017)

Wastewater Disinfection Alternatives								
	Chlorine	NaOCI	UV Light	PAA				
Safe transportation and storage	××	\checkmark	N/A	\checkmark				
Low toxicity to acquatic life	×	×	\checkmark	\checkmark				
No harmful disinfection by-products	×	×	\checkmark	\checkmark				
Effectivness in low water qualily	\checkmark	\checkmark	×	$\checkmark\checkmark$				
Low complexity of operation	\checkmark		×	\checkmark				
Low operating costs	\checkmark	\checkmark	\checkmark	\checkmark				
Low capital costs	\checkmark	\checkmark	××	\checkmark				


Specialty Appplication Example (2): Electronics


Ultra-high purity H₂O₂ essential in manufacturing of electronic devices

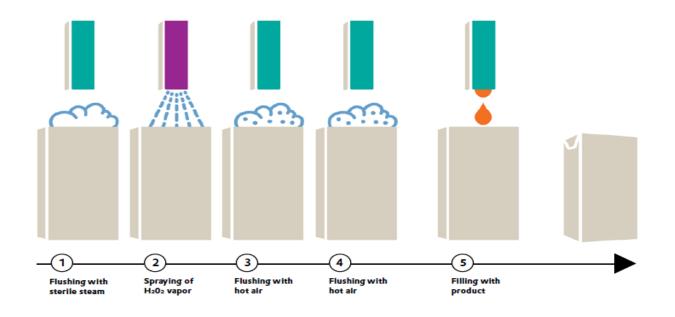
Industry Overview and Growth driver

- Growing trend towards smaller electronic device geometries results in increasing number of process steps
- This requires ultra-high purity cleaning agents in semiconductor manufacturing - driving more demand for ultra-high purity H₂O₂
- High-purity, electronics-grade H₂O₂ is preferred because of their low cost, effectiveness and reduced waste disposal
- Electronic-grade H₂O₂ difficult to transport, as maintaining high quality requires specialized transportation equipment
 - Geographic proximity is key to cost and reliability

PeroxyChem with dedicated electronic-grade H₂O₂ plant in Saratoga Springs close to end customer with long-term supply contract

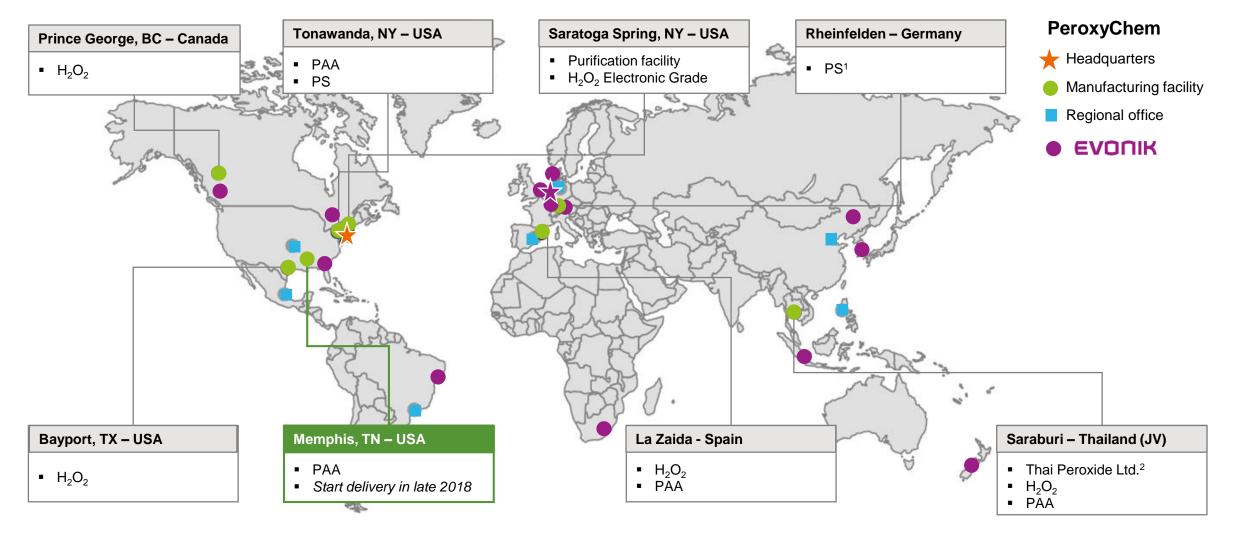
Specialty Appplication Example (3): Food & Beverage

Stricter regulations in food & beverage processing offer further growth potential

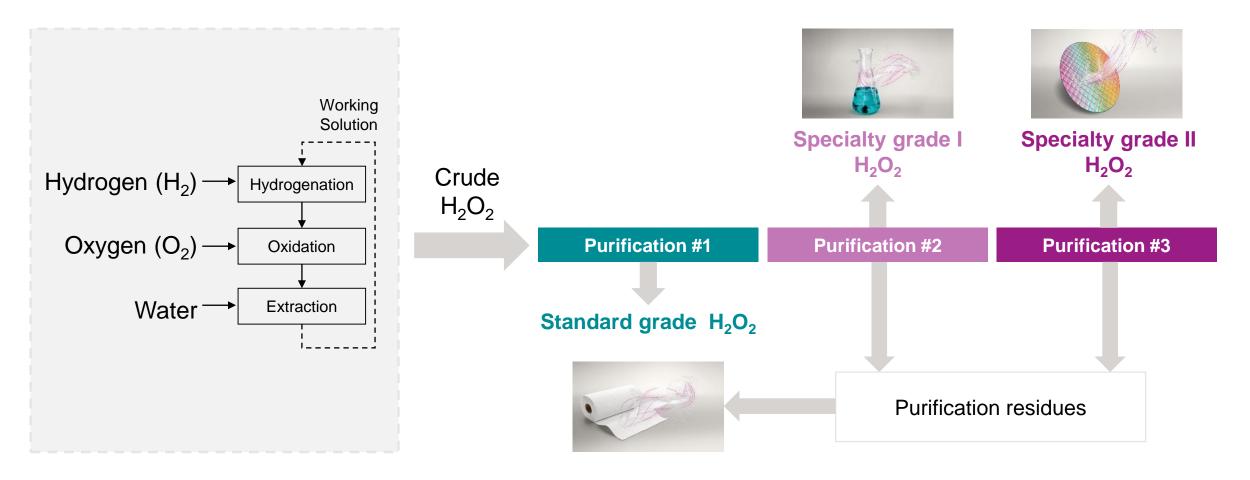

Industry Overview and Growth driver

- Increased demand for food safety as well as stricter regulations
- Poultry and meat processing:
 - PAA replacing chlorine as primary treatment method for poultry due to superior efficacy

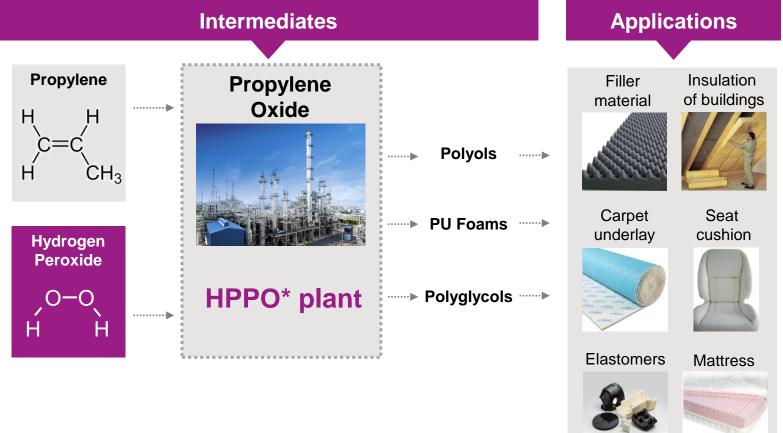
Beverage industry:


- Rising hygienic requirements for dairy products, juices or nutritional natural drinks
- Aseptic packaging utilizes H₂O₂ or PAA for the sterilization of packaging material and machines
- Extends shelf life and preserves flavor and taste
- Can work with both polyethylene bottles and paperboard containers

Aseptic packaging – Spraying Technology



Combined production set-up Strengthening of global position and stronger footprint in North America and Europe



Hydrogen peroxide is purified in a sequential process leading to different specialty grades for various applications

HPPO: Technology to manufacture propylene oxide (PO), a polyurethane (PU) precursor, on basis of H₂O₂

Benefits from HPPO technology

- Substantial cost advantages versus alternative processes
- More environmentally friendly, only water as side stream
- Own technology licensed by Evonik; Evonik as only grantor of a licence for HPPO
- Evonik and Dow/BASF only players with proprietary technology
- Cost advantage of new H₂O₂ plants will also allow to capture growth in other H₂O₂ applications besides HPPO

* Hydrogen Peroxide to Propylene Oxide