

New generation of lubricant additives:

Evonik combines fuel savings with additional protection against wear and tear.

Essential levers for efficient mobility

Lubricants

Lightweight design

Tires

Keeping your engine "humming"

Lubricants

- Reduce friction and wear
- Enable transmission of force
- Provide cooling
- Dampen vibrations
- Seal
- Protect against corrosion

...and thereby also reduce fuel consumption in vehicles!

Viscosity plays a key role

Too low viscosity:

Metal parts rub against each other

Too high viscosity:

More energy required to keep the engine components moving in the lubricant

The ideal compromise varies depending on design and operating conditions

Viscosity is temperature-dependent

The challenge is to keep optimal viscosity stable across a broad range of temperatures

Modern lubricants contain temperature-sensitive thickeners

- Base oil
- Viscosity index improvers
- Wear-protection additives
- Antioxidants
- Dispersion agents

Lubricant additives can reduce fuel consumption by up to 4 percent

Engine oil: ≈1.9%

Transmission oil (automatic): ≈1.2%

Axle oil: ≈0.5%

Engine

Transmission

Axle

Polymers as viscosity index improvers

PAMAs thicken the base oil

PAMA (schematic)

Monomers with side chains of 8-18 carbon atoms

Small coil at low temperatures

Large coil at high temperatures

New generation of comb polymers

Comb polymer (schematic)

Compact backbone with side chains of approx. 300 carbon atoms

Shrunk coil at low temperatures

Expanded coil at high temperatures

Comb polymers–a step closer to an ideal lubricant

Viscosity-modified lubricant with comb polymers

Viscosity-modified lubricant with PAMA

Comb polymers reduce fuel consumption

Laboratory tests with powerful engines (215 kW@6400 rpm):

- Lubricant with VISCOPLEX® 3-200 reduces fuel consumption by 1.9% compared to styrene-isoprene-based competitor products
- Viscosity-reducing effect up to -40°C leads to better engine start-up response in winter conditions

NEDC: New European Driving Cycle

Total cost advantage based on comb polymers

Savings for car manufacturers

2015 basis: $130 \text{ g CO}_2/\text{km}$

2020 objective: 95 g CO₂/km

EU penalty: €95 per g of CO₂

Savings for consumers

Fuel consumption: 6.0 l/100 km

Vehicle life expectancy: 200,000 km

Price of gasoline: €1.50/l

€400 per vehicle for new vehicles in the EU

€630 per vehicle over the entire lifecycle

Comb polymers with additional surface-active properties

VISCOPLEX® 12-209

As a comb polymer:

Viscosity improvement

Fuel savings

By integration of surface-active anchor groups:

Lubricating polymer film on the metal surface

Keeps oxidation products in suspension

Extended life expectancy of drivetrain components and lubricant

Guidance for Iubricant manufacturers

Evonik is marketing its lubricant additives—including formulation assistance and services for durable, fuel-efficient automotive drivetrain components—under the brand name DRIVONTM technology

DRIVON™

Technology platform is under continuous development

